
Mathematics in
Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Python is a powerful tool for mathematical
calculations

• Python Standard Library
– math Module
– statistics Module

• NumPy Library

Mathematics in Python

• Python Standard Library and Basic Math
Functions

• NumPy Library
• Statistics
• Trigonometric Functions
• Polynomials
• Complex Numbers

Contents

• Python IDLE
• Spyder (Anaconda distribution)
• PyCharm
• Visual Studio Code
• Visual Studio
• Jupyter Notebook
• …

Python Editors

Spyder (Anaconda distribution)

Code Editor window

Console window

Variable Explorer window

Run Program button

https://www.anaconda.com

https://www.anaconda.com/

Calculations in Python

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

> x = 5
> y = a*x + b
> print(y)

We can use variables in a calculation like this:
𝑦(𝑥) = 2𝑥 + 4

𝑦(3) = ?

𝑦(5) = ?

𝑦(𝑥) = 𝑎𝑥 + 𝑏

• Python allows you to split your program into modules
that can be reused in other Python programs. It comes
with a large collection of standard modules that you
can use as the basis of your programs.

• The Python Standard Library consists of different
modules for handling file I/O, basic mathematics, etc.

• You don't need to install the modules in the Python
Standard Library separately, but you need to important
them when you want to use some of these modules or
some of the functions within these modules.

Python Standard Library

The math module has all the basic math
functions you need, such as:
• Trigonometric functions: sin(x), cos(x), etc.
• Logarithmic functions: log(), log10(), etc.
• Statistics: mean(), stdev(), etc.
• Constants like pi, e, inf, nan, etc.

math Module
Python Standard Library

math Module
If we need only the sin() function, we can do like this:

If we need a few functions, we can do like this:

If we need many functions, we can do like this:

from math import sin

x = 3.14
y = sin(x)

from math import sin, cos

x = 3.14
y = sin(x)
print(y)

y = cos(x)
print(y)

from math import *

x = pi
y = sin(x)
print(y)

y = cos(x)
print(y)

…

import math
x = 3.14
y = math.sin(x)
print(y)

We can also do like this:

Basic Math Functions

https://docs.python.org/3/library/math.html

Some basic math functions in
Python Standard Library:

• math.exp(x)
• math.log(x)
• math.log10(x)
• math.pow(x,y)
• math. sqrt(x)
• …

import math as mt

x = 3

y = mt.exp(x)
print(y)

y = mt.log(x)
print(y)

y = mt.log10(x)
print(y)

n = 2
y = mt.pow(x,n)
print(y)

Some basic Examples:

https://docs.python.org/3/library/math.html

Mathematical Expressions
Let's create the following mathematical expression in Python:

𝑓(𝑥, 𝑦) = 3𝑥! + 𝑥! + 𝑦! + 𝑒"#(%)

import math as mt

x = 2
y = 2

f = 3*mt.pow(x,2) + mt.sqrt(mt.pow(x,2) + mt.pow(y,2)) + mt.exp(mt.log(x))

print(f)

Python Code:
𝑓 2,2 =?

The answer becomes 𝑓(2,2) = 16.83

Mathematical Expressions
Let's create a function that calculates the following mathematical expression:

𝑓(𝑥, 𝑦) = 3𝑥! + 𝑥! + 𝑦! + 𝑒"#(%)

import math as mt

def func_ex(x,y):
f = 3*mt.pow(x,2) + mt.sqrt(mt.pow(x,2) + mt.pow(y,2)) + mt.exp(mt.log(x))
return f

x = 2
y = 2

f = func_ex(x,y)

print(f)

Python Code:

• The Python Standard Library consists basic Math
functions, for fore advanced Math functions, you
typically want to use the NumPy Library

• If you don’t have Python yet and want the
simplest way to get started, you can use the
Anaconda Distribution - it includes Python,
NumPy, and other commonly used packages for
scientific computing and data science.

• Or use “pip install numpy“

NumPy

https://numpy.org

https://numpy.org/

NumPy
import numpy as np

x = 3

y = np.sin(x)

print(y)

Basic NumPy Example: In this example we use both the math module in the
Python Standard Library and the NumPy library:

import math as mt
import numpy as np

x = 3

y = mt.sin(x)
print(y)

y = np.sin(x)
print(y)

As you see, NumPy also have also similar functions
(e.g., sim(), cos(), etc.) as those who is part of the
math library, but they are more powerful

Mathematical Expressions
Let's create the following mathematical expression in Python using NumPy:

𝑓(𝑥, 𝑦) = 3𝑥! + 𝑥! + 𝑦! + 𝑒"#(%)

import numpy as np

def func_ex(x,y):
f = 3*np.power(x,2) + np.sqrt(np.power(x,2) + np.power(y,2)) + np.exp(np.log(x))
return f

x = 2
y = 2

f = func_ex(x,y)

print(f)

Python Code:

𝑓 2,2 =?

The answer becomes 𝑓(2,2) = 16.83

Previously we used math in the Python Standard Library

Mathematical Expressions
𝑓(𝑥, 𝑦) = 3𝑥! + 𝑥! + 𝑦! + 𝑒"#(%)

import numpy as np

def func_ex(x,y):
f = 3*np.power(x,2) + np.sqrt(np.power(x,2) +
np.power(y,2)) + np.exp(np.log(x))
return f

start = 0
stop = 11
increment = 1

x_data = np.arange(start,stop,increment)
y_data = np.arange(start,stop,increment)

for x in x_data:
for y in y_data:

f = func_ex(x,y)
print(f"f({x},{y})={f}")

Let's find the values of 𝑓(𝑥, 𝑦) for
0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑦 ≤ 10

In order to do that we can use a
Nested For loop:

• Mean / Average
• Variance
• Standard Deviation
• Median

Statistics

𝜇 = 𝑥̅ =
𝑥' + 𝑥! +⋯+ 𝑥(

𝑁 =
1
𝑁:

)*'

(

𝑥)

𝑣𝑎𝑟 𝑥 = 𝜎! =
1
𝑁:

)*'

(

𝑥) − 𝑥̅ !

𝜎 =
1
𝑁:

)*'

(

𝑥) − 𝑥̅ !
𝜎! = 𝑣𝑎𝑟 𝑥 ⇔ 𝜎 = 𝑣𝑎𝑟 𝑥

The mean is the sum of the data divided by the
number of data points. It is commonly called
"the average”:

Variance is a measure of the
variation in a data set:

The standard deviation is a measure of the
spread of the values in a dataset or the
value of a random variable. It is defined as
the square root of the variance:

Median
data = [-1.0, 11, 2.5, 3.25, 5.75]

data = [-1.0, 2.5, 3.25, 5.75, 11]

Given the following dataset:

Put them in ascending order:

The Median is the value in the middle

data = [-1.0, 11, 2.5, 3.25]

If even numbers in the dataset:

Put them in ascending order:

data = [-1.0, 2.5, 3.25, 11]

The Median will be:

(2.5 + 3.25)/2 = 2.875

Statistics

Statistics using the statistics module in
Python Standard Library:

import statistics as st

data = [-1.0, 11, 2.5, 3.25, 5.75]

#Mean or Average
m = st.mean(data)
print(m)

Standard Deviation
st_dev = st.stdev(data)
print(st_dev)

Median
med = st.median(data)
print(med)

Variance
var = st.variance(data)
print(var)

Example:

IMPORTANT: Do not name your file
"statistics.py" since the import will be
confused and throw the errors of the
library not existing and the mean function
not existing.

• Python offers lots of Trigonometric functions,
e.g., sin, cos, tan, etc.

• Note! Most of the trigonometric functions
require that the angle is expressed in radians.

• We can use Math module in the Python
Standard Library

• Or we can use the NumPy library

Trigonometric Functions

Trigonometric Functions
Trigonometric functions in the Math module in the Python Standard Library:

import math as mt

x = 2*mt.pi

y = mt.sin(x)
print(y)

y = mt.cos(x)
print(y)

y = mt.tan(x)
print(y)

Trigonometric Functions
Plotting Example using a For Loop and the matplotlib library:
import math as mt
import matplotlib.pyplot as plt

xdata = []
ydata = []

for x in range(0, 10):
xdata.append(x)
y = mt.sin(x)
ydata.append(y)

plt.plot(xdata, ydata)
plt.show()

Trigonometric Functions
Improved Plotting Example:
import math as mt
import matplotlib.pyplot as plt

x = 0
N = 100
xdata = []
ydata = []

for i in range(0, N):
x = x + 0.1
xdata.append(x)
y = mt.sin(x)
ydata.append(y)

plt.plot(xdata, ydata)
plt.show()

“Smoother“ curve:

The problem with using the Trigonometric functions in the
the Math module from the Python Standard Library is that
they don't handle an array as input.

Trigonometric Functions
Using NumPy:
import numpy as np
import matplotlib.pyplot as plt

xstart = 0
xstop = 2*np.pi
increment = 0.1

x = np.arange(xstart,xstop,increment)

y = np.sin(x)

plt.plot(x, y)
plt.show()

The Trigonometric Functions in the
NumPy library can handle arrays as
input arguments. No For Loop needed!

Trigonometric Functions
import numpy as np
import matplotlib.pyplot as plt

xstart = 0
xstop = 2*np.pi
increment = 0.1

x = np.arange(xstart,xstop,increment)

y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1, x, y2)
plt.legend(["sin(x)", "cos(x)"])
plt.show()

You can also plot multiple plots like this:

Trigonometric Functions
import numpy as np
import matplotlib.pyplot as plt

def r2d(r):
d = r * (180/np.pi)
return d

xstart = 0
xstop = 2*np.pi
increment = 0.1

x = np.arange(xstart,xstop,increment)
x_deg = r2d(x)

y = np.sin(x)

plt.plot(x_deg, y)
plt.xlabel("x in degrees")
plt.axis([0, 360, -1, 1])
plt.grid()

Converting to degrees (x-axis):
Here I have created my own Function r2d(r)
You could have used math.degrees(x)

Polynomials
A polynomial is expressed as:

𝑝 𝑥 = 𝑝!𝑥" + 𝑝#𝑥"$! +⋯+ 𝑝"𝑥 + 𝑝"%!

where 𝑝!, 𝑝#, 𝑝&, … are the coefficients of the polynomial.

We will use the Polynomial Module in the NumPy Package.

https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html

https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html

Polynomials

import numpy.polynomial.polynomial as poly

p = [5.6, 8, 3.2, 0, -5.45]

r = poly.polyroots(p)
print(r)

Given the following polynomial:
𝑝 𝑥 = −5.45𝑥+ + 3.2𝑥! + 8𝑥 + 5.6

We need to rewrite it like this in Python:
𝑝 𝑥 = 5.6 + 8𝑥 + 3.2𝑥! + 0𝑥, −5.45𝑥+

𝑝 𝑥 = 0 → 𝑥 =?

Polynomials

import numpy.polynomial.polynomial as poly

p = [11, 5, 0, 2, -2.1]
r = poly.polyroots(p)
print(r)

x = 2
px = poly.polyval(x, p)
print(px)

Given the following polynomial:
𝑝 𝑥 = −2.1𝑥+ + 2𝑥, + 5𝑥 + 11

We need to rewrite it like this in Python:
𝑝 𝑥 = 11 + 5𝑥 + 0𝑥! + 2𝑥, − 2.1𝑥+

𝑝 2 =?

𝑝 𝑥 = 0 → 𝑥 =?

Polynomials
import numpy.polynomial.polynomial as poly

p1 = [1, 1, -1]
p2 = [2, 0, 0, 1]

p = poly.polymul(p1, p2)

print(p)

r = poly.polyroots(p)
print(r)

x = 2
px = poly.polyval(x, p)
print(px)

Let's find the polynomial 𝑝(𝑥) =
𝑝'(𝑥) C 𝑝!(𝑥) using Python

And let's find the roots of the
polynomial

𝑝 𝑥 = 0

Given the following
polynomials:

𝑝' 𝑥 = 1 + 𝑥 − 𝑥!

𝑝! 𝑥 = 2 + 𝑥,

Polynomial Fitting
import numpy as np
import numpy.polynomial.polynomial as poly
import matplotlib.pyplot as plt

xstart = 0
xstop = 2*np.pi
increment = 0.1

x = np.arange(xstart,xstop,increment)
y = np.sin(x)

plt.plot(x, y)

N = 3
p = poly.polyfit(x,y,N)
print(p)

y2 = poly.polyval(x, p)

plt.plot(x, y2)
plt.show()

Find a Polynomial that best fits the following
function:

𝑦 = sin(𝑥)

Try with different order of the polynom
N = 3

Polynomial Fitting
Find a Polynomial that best fits the following function:

𝑦 = sin(𝑥)

N = 5
N = 3

𝑝 𝑥 = −0.18 + 1.88𝑥 − 0.88𝑥! + 0.09𝑥,
[-0.18215486 1.88791463 -0.87536931 0.09309684]

𝑝 𝑥 = 0.01 + 0.87𝑥 + 0.28𝑥! − 0.4𝑥" + 0.09𝑥# − 0.006𝑥$
[0.01223516 0.87014661 0.27985151 -0.39981223 0.08841641 -0.0056342]

Complex Numbers
A complex number is defined like this: 𝑧 = 𝑎 + 𝑗𝑏

The imaginary 𝑗 is defined as:

𝑗 = −1

Where 𝑎 is called the real part of 𝑧 and 𝑏 is called the imaginary part of 𝑧, i.e.:

𝑅𝑒(𝑧) = 𝑎, 𝐼𝑚(𝑧) = 𝑏

z = 3 + 2j

In Python you define a complex number like this:

Complex Numbers – Polar Form
Complex numbers can also be expressed on exponential/polar form:

𝑧 = 𝑟𝑒'(

Where: 𝑟 = 𝑧 = 𝑎!+𝑏!

𝜃 = 𝑎𝑡𝑎𝑛
𝑏
𝑎

Note that 𝑎 = 𝑟 cos 𝜃 and 𝑏 = 𝑟 sin 𝜃

Complex Numbers
Given the following complex
numbers:

𝑎 = 5 + 3𝑗
𝑏 = 1 − 1𝑗

In Python we can define the complex
numbers and perform basic
operations (+, -, *, /) like this:

a = 5 + 3j
b = 1 - 1j

c = a + b
print(c)

d = a - b
print(d)

e = a * b
print(e)

f = a / b
print(f)

Complex Numbers
import cmath

x = 2
y = -3

converting x and y into complex number
z = complex(x,y)
print(z.real)
print(z.imag)

print(z.conjugate())

converting to polar form
w = cmath.polar(z)
print (w)

converting to to rectangular form
w = cmath.rect(2,3)
print (w)

In addition, there exists several
Complex Number Functions in
Python. We use the cmath library:

https://docs.python.org/3/library/cmath.html

cmath.phase(x)
cmath.polar(x)
cmath.rect(r, phi)
cmath.exp(x)
cmath.log10(x)
cmath.sqrt(x)
cmath.acos(x)
cmath.asin(x)
cmath.atan(x)
cmath.cos(x)
cmath.sin(x)
cmath.tan(x)

https://docs.python.org/3/library/cmath.html

• Linear Algebra
• Complex Numbers
• Differential Equations
• Interpolation
• Curve Fitting
• Least Square Method
• Numerical Differentiation
• Numerical Integration
• Optimization

Advanced Mathematics

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

